網頁

2023年10月11日 星期三

安裝 Ubuntu 20.04

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install ssh

$ sudo vi /etc/fstab
#中間的空格要使用 tab
ip:/share_folder /mnt/mount_folder nfs defaults,bg 0 0
$ cd /mnt
$ sudo mkdir QNAP_A QNAP_B
$ sudo mount -a

$ mkdir -p ~/.config/autostart
$ cp /usr/share/applications/vino-server.desktop ~/.config/autostart/
$ gsettings set org.gnome.Vino prompt-enabled false
$ gsettings set org.gnome.Vino require-encryption false
$ gsettings set org.gnome.Vino authentication-methods "['vnc']"
$ gsettings set org.gnome.Vino vnc-password $(echo -n 'ChangeToYourPasswd'|base64)
$ sudo vi /etc/gdm3/custom.conf
WaylandEnable=false
AutomaticLoginEnable = true
AutomaticLogin = UserLoginName
$ vi vino.sh
DISP=`ps -u $(id -u) -o pid= | \
    while read pid; do
        cat /proc/$pid/environ 2>/dev/null | tr '\0' '\n' | grep '^DISPLAY=:'
    done | grep -o ':[0-9]*' | sort -u`
echo $DISP
/usr/lib/vino/vino-server --display=$DISP
$ chmod +x vino.sh

依據 使用最新版本的 driver
CUDA Toolkit and Corresponding Driver Versions
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
dGPU Setup for Ubuntu
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Quickstart.html
Ubuntu 20.04
GStreamer 1.16.3
NVIDIA driver 525.125.06
CUDA 12.1
TensorRT 8.5.3.1

$ sudo ubuntu-drivers devices
$ sudo apt-get install nvidia-driver-535
$ sudo reboot
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.1-1_all.deb
$ sudo dpkg -i cuda-keyring_1.1-1_all.deb
$ sudo apt-get update
$ sudo apt-get -y install cuda-12-2
$ sudo apt-get -y install cuda-12-1

安裝 cuDNN
參考 https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
到 2.2. Downloading cuDNN for Linux(https://developer.nvidia.com/cudnn)
下載 Local Install for Ubuntu18.04 x86_64(Deb)
$ sudo apt-get install zlib1g
$ sudo dpkg -i cudnn-local-repo-ubuntu2004-8.9.5.29_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2004-8.9.5.29/cudnn-local-98C06E99-keyring.gpg /usr/share/keyrings/
$ sudo apt-get update
$ apt list -a libcudnn8
$ sudo apt-get install libcudnn8=8.9.5.29-1+cuda12.2
$ sudo apt-get install libcudnn8-dev=8.9.5.29-1+cuda12.2
$ sudo apt-get install libcudnn8-samples=8.9.5.29-1+cuda12.2
$ update-alternatives --display libcudnn
$ cp -r /usr/src/cudnn_samples_v8/ .
$ cd cudnn_samples_v8/mnistCUDNN/
$ sudo apt-get install libfreeimage3 libfreeimage-dev
$ make clean && make
$ ./mnistCUDNN
...
Test passed!

安裝 TensorRT 8.6.1
https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-861/install-guide/index.html
$ sudo apt-get install python3-pip
$ sudo apt-get install python3.8.venv
$ python3 -m venv envs/tensorrt
$ source envs/tensorrt/bin/activate
$ pip3 install --upgrade pip
$ python3 -m pip install --extra-index-url https://pypi.nvidia.com tensorrt_libs
$ python3 -m pip install --extra-index-url https://pypi.nvidia.com tensorrt_bindings
$ python3 -m pip install --upgrade tensorrt
$ python3 -m pip install --upgrade tensorrt_lean
$ python3 -m pip install --upgrade tensorrt_dispatch
測試  TensorRT Python
$ python3
>>> import tensorrt
>>> print(tensorrt.__version__)
>>> assert tensorrt.Builder(tensorrt.Logger())
>>> import tensorrt_lean as trt
>>> print(trt.__version__)
>>> assert trt.Builder(trt.Logger())
>>> import tensorrt_dispatch as trt
>>> print(trt.__version__)
>>> assert trt.Builder(trt.Logger())

連結 https://developer.nvidia.com/tensorrt 按 GET STARTED
連結 https://developer.nvidia.com/tensorrt-getting-started 按 DOWNLOAD NOW
選擇 TensorRT 8
選擇 TensorRT 8.6 GA
TensorRT 8.6 GA for Ubuntu 20.04 and CUDA 12.0 and 12.1 DEB local repo Package
$ sudo dpkg -i nv-tensorrt-local-repo-ubuntu2004-8.6.1-cuda-12.0_1.0-1_amd64.deb
$ sudo cp /var/nv-tensorrt-local-repo-ubuntu2004-8.6.1-cuda-12.0/nv-tensorrt-local-9A1EDFBA-keyring.gpg /usr/share/keyrings/
$ sudo apt-get update
$ sudo apt-get install tensorrt
$ sudo apt-get install libnvinfer-lean8
$ sudo apt-get install libnvinfer-vc-plugin8
$ sudo apt-get install python3-libnvinfer-lean
$ sudo apt-get install python3-libnvinfer-dispatch
$ python3 -m pip install numpy
$ sudo apt-get install python3-libnvinfer-dev
$ python3 -m pip install protobuf
$ sudo apt-get install uff-converter-tf
$ python3 -m pip install numpy onnx
$ sudo apt-get install onnx-graphsurgeon
確認安裝
$ dpkg-query -W tensorrt
tensorrt        8.6.1.6-1+cuda12.0

安裝 DeepStream
$ sudo apt-get install libssl1.1
$ sudo apt-get install libgstreamer1.0-0
$ sudo apt-get install gstreamer1.0-tools
$ sudo apt-get install gstreamer1.0-plugins-good
$ sudo apt-get install gstreamer1.0-plugins-bad
$ sudo apt-get install gstreamer1.0-plugins-ugly
$ sudo apt-get install gstreamer1.0-libav
$ sudo apt-get install libgstreamer-plugins-base1.0-dev
$ sudo apt-get install libgstrtspserver-1.0-0
$ sudo apt-get install libjansson4
$ sudo apt-get install libyaml-cpp-dev
$ sudo apt-get install libjsoncpp-dev
$ sudo apt-get install protobuf-compiler
$ sudo apt-get install gcc
$ sudo apt-get install make
$ sudo apt-get install git
$ sudo apt-get install python3

$ git clone https://github.com/edenhill/librdkafka.git
$ cd librdkafka
$ git reset --hard 7101c2310341ab3f4675fc565f64f0967e135a6a
$ ./configure
$ make
$ sudo make install
$ sudo mkdir -p /opt/nvidia/deepstream/deepstream-6.3/lib
$ sudo cp /usr/local/lib/librdkafka* /opt/nvidia/deepstream/deepstream-6.3/lib

https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstream
下載 deepstream-6.3_6.3.0-1_arm64.deb
$ wget --content-disposition 'https://api.ngc.nvidia.com/v2/resources/nvidia/deepstream/versions/6.3/files/deepstream-6.3_6.3.0-1_amd64.deb'
$ sudo apt-get install ./deepstream-6.3_6.3.0-1_amd64.deb
$ cd /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app
$ deepstream-app -c source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt 

安裝 Docker
https://docs.docker.com/engine/install/ubuntu/
$ sudo apt-get update
$ sudo apt-get install ca-certificates curl gnupg
$ sudo install -m 0755 -d /etc/apt/keyrings
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
$ sudo chmod a+r /etc/apt/keyrings/docker.gpg
$ echo \
  "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
  "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
  sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
$ sudo apt-get update
$ sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
$ sudo docker run --rm hello-world

安裝 NVIDIA Container Toolkit
參考 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
$ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list \
  && \
    sudo apt-get update
$ sudo apt-get install -y nvidia-container-toolkit
$ sudo nvidia-ctk runtime configure --runtime=docker
$ sudo systemctl restart docker
$ sudo groupadd docker
$ sudo usermod -a -G docker $USER
$ docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi

安裝 NGC CLI
參考 https://ngc.nvidia.com/setup/installers/cli
$ wget --content-disposition https://api.ngc.nvidia.com/v2/resources/nvidia/ngc-apps/ngc_cli/versions/3.30.1/files/ngccli_linux.zip -O ngccli_linux.zip && unzip ngccli_linux.zip
$ find ngc-cli/ -type f -exec md5sum {} + | LC_ALL=C sort | md5sum -c ngc-cli.md5
$ sha256sum ngccli_linux.zip
$ chmod u+x ngc-cli/ngc
$ echo "export PATH=\"\$PATH:$(pwd)/ngc-cli\"" >> ~/.bash_profile && source ~/.bash_profile
$ ngc config set
# 直接 enter 即可
$ docker login nvcr.io
Username: $oauthtoken
Password: <Your API Key>

用 Docker 開發 DeepStream 6.3
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_docker_containers.html
$ sudo docker pull nvcr.io/nvidia/deepstream:6.3-gc-triton-devel
$ export DISPLAY=:0
$ xhost +
$ docker run -it --rm --net=host --gpus all -e DISPLAY=$DISPLAY --device /dev/snd -v /tmp/.X11-unix/:/tmp/.X11-unix nvcr.io/nvidia/deepstream:6.3-gc-triton-devel
# cd samples/configs/deepstream-app
# deepstream-app -c source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt 
# exit
$ sudo docker ps -a
$ sudo docker stop container_id
$ sudo docker rm container_id
$ sudo docker image list
$ sudo docker image rm image_id

沒有留言:

張貼留言