更新 system level packages
$ sudo apt-get update
$ sudo apt-get upgrade
安裝 system-level 相關套件
$ sudo apt-get install git
$ sudo apt-get install cmake
$ sudo apt-get install libatlas-base-dev
$ sudo apt-get install gfortran
$ sudo apt-get install libhdf5-serial-dev
$ sudo apt-get install hdf5-tools
$ sudo apt-get install python3-dev
$ sudo apt-get install locate
$ sudo apt-get install libfreetype6-dev
$ sudo apt-get install python3-setuptools
$ sudo apt-get install protobuf-compiler
$ sudo apt-get install libprotobuf-dev
$ sudo apt-get install openssl
$ sudo apt-get install libssl-dev
$ sudo apt-get install libcurl4-openssl-dev
$ sudo apt-get install cython3
$ sudo apt-get install libxml2-dev
$ sudo apt-get install libxslt1-dev
更新 CMake
$ wget http://www.cmake.org/files/v3.13/cmake-3.13.0.tar.gz
$ tar xpvf cmake-3.13.0.tar.gz cmake-3.13.0
$ cd cmake-3.13.0
$ ./bootstrap --system-curl
$ make -j4
$ vi ~/.bashrc
加入下列一行
export PATH=/home/nano/Data/cmake-3.13.0/bin:$PATH
$ source ~/.bashrc
安裝 OpenCV, 參考 Build OpenCV on Jetson NANO with CUDA CUDNN
新增 python virtual environment, 參考 python virtualenv
建立 py3cv4
$ source ~/envs/py3cv4/bin/activate
安裝 Peotobuf Compiler
下載別人做好的安裝 script, 並執行
$ wget https://raw.githubusercontent.com/jkjung-avt/jetson_nano/master/install_protobuf-3.6.1.sh
$ sudo chmod +x install_protobuf-3.6.1.sh
$ ./install_protobuf-3.6.1.sh
使用 setup.py 安裝 protobuf 於 py3cv4
$ source ~/envs/py3cv4/bin/activate
$ cd ~
$ cp -r ~/src/protobuf-3.6.1/python/ .
$ cd python
$ python setup.py install --cpp_implementation
安裝 TensorFlow, Keras, NumPy 和 SciPy
$ pip install numpy
$ pip install cython
$ wget https://github.com/scipy/scipy/releases/download/v1.3.3/scipy-1.3.3.tar.gz
$ tar -xzvf scipy-1.3.3.tar.gz scipy-1.3.3
$ cd scipy-1.3.3/
$ python setup.py install
其中注意網址中的 v44 表示 Jetpack 4.4
$ pip install tensorflow-1.15.3+nv20.7-cp36-cp36m-linux_aarch64.whl
$ pip install keras
安裝 TensorFlow Object Detection API
TFOD API 文件參考 TensorFlow 2 Object Detection API tutorial
下載 TensorFlow Model Garden
$ git clone https://github.com/tensorflow/models
安裝 COCO API
$ git clone https://github.com/cocodataset/cocoapi.git
$ cd cocoapi/PythonAPI
$ python setup.py install
編譯 Protobuf libraries
(py3cv4) nano@nano-desktop:~/Data/tensorflow-models/models/research$ protoc object_detection/protos/*.proto --python_out=.
新增 PYTHONPATH 到 TFOD API
(py3cv4) nano@nano-desktop:~$ cat tfod_api.sh
#!/bin/sh
export PYTHONPATH=$PYTHONPATH:/home/nano/Data/tensorflow-models/models/research:/home/nano/Data/tensorflow-models/models/research/slim
安裝 tf_trt_models
$ git clone --recursive https://github.com/NVIDIA-Jetson/tf_trt_models.git
$ cd tf_trt_models
$ ./install.sh
安裝機器學習,影像處理,繪圖套件
$ pip install matplotlib
$ pip install scikit-learn
$ pip install scikit-image
$ pip install pillow
$ pip install imutils
$ pip install dlib
$ pip install flask
$ pip install jupyter
$ pip install lxml
$ pip install progressbar2
測試 TFOD API
(py3cv4) nano@nano-desktop:~/Data/tensorflow-models/models/research$ python object_detection/builders/model_builder_tf1_test.py
Ran 21 tests in 0.892s
OK (skipped=1)
(py3cv4) nano@nano-desktop:~/Data/tensorflow-models/models/research$
沒有留言:
張貼留言