網頁

2024年8月28日 星期三

SwinTransformer 學習紀錄

參考 https://github.com/microsoft/Swin-Transformer?tab=readme-ov-file
參考 https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
參考 https://mmdetection.readthedocs.io/en/latest/get_started.html
參考 https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md
參考 https://github.com/open-mmlab/mmcv
參考 https://github.com/open-mmlab/mim?tab=readme-ov-file

Swin-Transformer 是原始版本,主要針對圖片分類
Swin-Transformer-Object-Detection 主要針對物件偵測(基於 mmdetection)
mmdetection 主要針對物件偵測,其中不只是 Swin-Transformer, 包含各式各樣先進的演算法
mmdetection 可在 mmdet/__init__.py 可以查詢到 mmcv 所需要的版本
Swin-Transformer-Object-Detection 要求使用 mmcv(1.4.0)
但 mmdetection 最後對應到 mmcv(1.4.0) 的版本為(v2.18.1)
所以以下放棄使用 Swin-Transformer-Object-Detection, 直接使用 mmdetection 的最新版本

$ docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:21.05-py3
$ docker run --gpus all -it --name SwinTransformer nvcr.io/nvidia/pytorch:21.05-py3
$ docker start SwinTransformer
$ docker attach SwinTransformer
# <ctrl+p><ctrl+q>
$ docker attach SwinTransformer
$ docker stop SwinTransformer
$ docker rm SwinTransformer
$ git clone https://github.com/microsoft/Swin-Transformer.git
$ git clone https://github.com/SwinTransformer/Swin-Transformer-Object-Detection.git
$ git clone https://github.com/open-mmlab/mmdetection.git
$ docker run --gpus all -it --name SwinTransformer --shm-size=8G \
  -v /mnt/Data/SwinTransformer/Swin-Transformer:/workspace/Swin-Transformer \
  -v /mnt/Data/SwinTransformer/mmdetection:/workspace/mmdetection \
  -v /mnt/Data/SwinTransformer/Swin-Transformer-Object-Detection:/workspace/Swin-Transformer-Object-Detection \
  -v /mnt/QNAP_A/ImageData/ImageNet:/workspace/ImageNet \
  nvcr.io/nvidia/pytorch:21.05-py3

# pip install timm==0.4.12
# pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8 pyyaml scipy

# cd /workspace/Swin-Transformer/kernels/window_process/
# python setup.py install

# cd /workspace/Swin-Transformer/
# wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
# python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py \
  --eval --cfg configs/swin/swin_tiny_patch4_window7_224.yaml \
  --resume swin_tiny_patch4_window7_224.pth --data-path /workspace/ImageNet \
  --batch_size=64
#### 出現下列錯誤
####  File "/opt/conda/lib/python3.8/site-packages/PIL/_typing.py", line 10, in <module>
####    NumpyArray = npt.NDArray[Any]
####AttributeError: module 'numpy.typing' has no attribute 'NDArray'
#### 解決
# pip install Pillow==9.5.0
#### 出現下列錯誤
####RuntimeError: Found 0 files in subfolders of: /workspace/ImageNet/val
####Supported extensions are: .jpg,.jpeg,.png,.ppm,.bmp,.pgm,.tif,.tiff,.webp
#### 解決
$ cd /mnt/QNAP_A/ImageData/ImageNet/
$ mv val val_a ;mkdir val; mv val_a val
#### 出現下列錯誤
ERROR: Unexpected bus error encountered in worker. This might be caused by insufficient shared memory (shm).
#### 解決 docker run 時須加上 --shm-size=8G

# cd /workspace/mmdetection
# pip install -U openmim
#### 出現下列錯誤
####ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will change the way that it resolves dependency conflicts.
####We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes the default.
#### 不用擔心

# mim list
# mim install mmengine
# mim install "mmcv>=2.0.0"
# pip install -v -e .
    # "-v" means verbose, or more output
    # "-e" means installing a project in editable mode,
    # thus any local modifications made to the code will take effect without reinstallation.
# mim download mmdet --config yolov3_mobilenetv2_8xb24-320-300e_coco --dest .
# mim list
# ls
# python demo/image_demo.py demo/demo.jpg yolov3_mobilenetv2_8xb24-320-300e_coco.py \
  --weights yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth
#### 出現下列錯誤
####    import cv2
####  File "/opt/conda/lib/python3.8/site-packages/cv2/__init__.py", line 5, in <module>
####    from .cv2 import *
####ImportError: libGL.so.1: cannot open shared object file: No such file or directory
#### 出現下列錯誤
####    cv.gapi.wip.GStreamerPipeline = cv.gapi_wip_gst_GStreamerPipeline
####AttributeError: partially initialized module 'cv2' has no attribute 'gapi_wip_gst_GStreamerPipeline' (most likely due to a circular import)
#### 解決
# pip install opencv-python-headless==4.4.0.46
#### 出現下列錯誤
####    assert (mmcv_version >= digit_version(mmcv_minimum_version)
####AssertionError: MMCV==2.2.0 is used but incompatible. Please install mmcv>=2.0.0rc4, <2.2.0.
#### 解決
# mim install "mmcv==2.0.0rc4"

# mim download mmdet --config mask-rcnn_swin-t-p4-w7_fpn_1x_coco --dest .
# python demo/image_demo.py demo/demo.jpg mask-rcnn_swin-t-p4-w7_fpn_1x_coco.py \
  --weights mask_rcnn_swin-t-p4-w7_fpn_1x_coco_20210902_120937-9d6b7cfa.pth

Jetson Container 使用紀錄

mic-733ao@ubuntu:~/Data/AgentStudio/jetson-containers$ ./run.sh --workdir=/opt/text-generation-webui $(./autotag text-generation-webui) python3 server.py --model-dir=/data/models/text-generation-webui --listen --verbose --trust-remote-code

mic-733ao@ubuntu:~/Data/AgentStudio/jetson-containers$ ./run.sh --workdir=/opt/text-generation-webui $(./autotag text-generation-webui) /bin/bash -c 'python3 download-model.py --output=/data/models/text-generation-webui/THUDM_cogvlm2-llama3-chinese-chat-19B-int4 THUDM/cogvlm2-llama3-chinese-chat-19B-int4'

產生授權錯誤
raise HTTPError(http_error_msg, response=self)
requests.exceptions.HTTPError: 401 Client Error: Unauthorized for url: https://huggingface.co/taide/TAIDE-LX-7B/resolve/main/README_en.md
到 https://huggingface.co/ 網站 右上角使用者/Settings/Access Tokens
建立 Fine-grained token, 打勾所有權限
$ export HUGGINGFACE_TOKEN=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

chrome://flags/#unsafely-treat-insecure-origin-as-secure

2024年8月2日 星期五

有用的 docker 命令

$ sudo docker exec -i -t container_name /bin/bash
$ docker cp container_id:/path /host/path

2024年8月1日 星期四

docker change Root Dir

$ systemctl stop docker
$ sud rsync -a /var/lib/docker/ /mnt/Data/docker-data
$ sudo vi /etc/docker/daemon.json
{
    "data-root": "/mnt/Data/docker-data",
    "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []
        }
    }
}

$ systemctl start docker
$ systemctl status docker
$ sudo docker info