網頁

2025年2月20日 星期四

open webui 使用網頁搜尋

https://developers.google.com/custom-search/v1/introduction?hl=zh-tw
點選 程式化搜尋引擎 (免費版) 使用者:取得金鑰

https://programmablesearchengine.google.com/controlpanel/all
點選 新增
輸入 搜尋引擎名稱
在 Paid Element API 金鑰 欄位,輸入之前取得的 金鑰
取得 搜尋引擎 ID

進入 open webui, 點選左下角使用者,選擇 設定
點選 管理員設定/網頁搜尋
開啟 啟用網頁搜尋
網頁搜尋引擎: google_pse
開啟 Full Context Mode
輸入 Google PSE API 金鑰
輸入 Google PSE 引擎 ID

網頁搜尋引擎: duckduckgo
可以直接使用

在 open webui 的傳送訊息欄位下方,可以點選 網頁搜尋

2025年2月19日 星期三

安裝 ollama open-webui nginx

參考 https://github.com/ollama/ollama
參考 https://hub.docker.com/r/ollama/ollama
參考 https://www.53ai.com/news/OpenSourceLLM/2024072585037.html

$ docker run -d --gpus=all -p 11434:11434 --name ollama \
  -v /mnt/Data/ollama/ollama_volume:/root/.ollama \
  ollama/ollama
$ docker exec -it ollama ollama run deepseek-r1
$ git clone https://github.com/ggerganov/llama.cpp.git
$ cd llama.cpp
$ cmake -B build
$ cmake --build build --config Release
$ pip install huggingface_hub

轉換 huggingface 上的 model, 成為 GGUF 格式
vi download.py 
from huggingface_hub import snapshot_download, login

login("hf_BqLATKBqbVzOWNBJcFMwHKzCJfu")

# 下载模型
snapshot_download(
    "taide/Llama-3.1-TAIDE-LX-8B-Chat",
    local_dir="taide_Llama-3.1-TAIDE-LX-8B-Chat",
    local_dir_use_symlinks=False,
    ignore_patterns=["*.gguf"]
)

$ vi convert_hf_to_gguf_update.py
在 models 中, 加入下行, 注意 TOKENIZER_TYPE 的選擇
    {"name": "taide_Llama-3.1-TAIDE-LX-8B-Chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/taide/Llama-3.1-TAIDE-LX-8B-Chat"},
    {"name": "yentinglin_Llama-3-Taiwan-8B-Instruct", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct"},
$ python convert_hf_to_gguf_update.py hf_BqLATKBqbVzOWNBJcFMwHKzCJfu
$ python convert_hf_to_gguf.py taide_Llama-3.1-TAIDE-LX-8B-Chat --outtype f16 --outfile taide_Llama-3.1-TAIDE-LX-8B-Chat.fp16.gguf
$ llama.cpp/build/bin/llama-quantize taide_Llama-3.1-TAIDE-LX-8B-Chat.fp16.gguf Q4_K_M
$ mv ggml-model-Q4_K_M.gguf taide_Llama-3.1-TAIDE-LX-8B-Chat-Q4_K_M.gguf
$ vi Modelfile.taide-8b
FROM ./yentinglin_Llama-3-Taiwan-8B-Instruct.Q4_K_M.gguf
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system message
SYSTEM """
我是一個萬事通
"""

$ docker exec -it ollama /bin/bash
# cd /root/.ollama
# ollama create taide-8b -f ./Modelfile.taide-8b
# ollama list
# ollama show taide-8b
# ollama rm taide-8b
# ollama ps
# ollama run taide-8b
>>> /bye
# OLLAMA_HOST=127.0.0.1:11434 ollama serve
$ curl http://localhost:11434/api/generate -d '{
  "model": "yentinglin-8b", 
  "prompt": "建議適合ai的程式語言"
}'
$ curl http://localhost:11434/api/generate -d '{
  "model": "yentinglin-8b", 
  "prompt": "建議適合ai的程式語言",
  "stream", false
}'
$ curl http://localhost:11434/api/chat -d '{
  "model": "yentinglin-8b", 
  "messages": [
    {"role": "user", "content": "建議適合ai的程式語言"}
  ]
}'
$ curl http://localhost:11434/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "yentinglin-8b",
        "messages": [
            {
                "role": "system",
                "content": "你是一個萬事通"
            },
            {
                "role": "user",
                "content": "眼睛酸痛,怎麼辦?"
            }
        ]
    }'

$ docker logs ollama

$ python ../llama.cpp/convert_hf_to_gguf.py yentinglin_Llama-3-Taiwan-8B-Instruct --outtype f16 --outfile yentinglin_Llama-3-Taiwan-8B-Instruct.fp16.gguf
$ llama.cpp/build/bin/llama-quantize yentinglin_Llama-3-Taiwan-8B-Instruct.fp16.gguf Q4_K_M


建議適合ai的程式語言

$ docker run -d -p 3000:8080 --gpus all \
  --add-host=host.docker.internal:host-gateway \
  -v /mnt/Data/ollama/open-webui_volume:/app/backend/data \
  --name open-webui \
  --restart always \
  ghcr.io/open-webui/open-webui:cuda
  
Firefox Web Browser 輸入 http://localhost:3000
出現 This address is restricted 錯誤
進入 Firefox Web Browser 設定
網址列輸入 about:config, 按 "Accept the Risk and Continue" 按鈕
在收尋欄輸入 network.security.ports.banned.override, 點選 "String", 按 +
輸入 port 3000, 按 V
重新載入 http://localhost:3000

chrome 設定
chrome://flags/#unsafely-treat-insecure-origin-as-secure
輸入網址 http://localhost:3000

安裝 nginx
參考 https://docs.openwebui.com/tutorials/https-nginx/
參考 https://yingrenn.blogspot.com/2020/07/ssl-nginx.html
vi nginx.conf
server {
    listen 443 ssl;
    server_name  www.domain.com.tw;
    ssl_certificate /etc/nginx/conf/Certs/server.pem;
    ssl_certificate_key /etc/nginx/conf/Certs/server.key;
    ssl_trusted_certificate /etc/nginx/conf/Certs/caChain.crt;
    ssl_stapling on;
    ssl_stapling_verify on;
    ssl_session_timeout 5m;
    ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
    ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:HIGH:!aNULL:!MD5:!RC4:!DHE;
    ssl_prefer_server_ciphers on;
    
    location / {
        proxy_set_header HOST $host;
        proxy_set_header X-Forwarded-Proto $scheme;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_pass http://host.docker.internal:3000;
        
        # Add WebSocket support (Necessary for version 0.5.0 and up)
        proxy_http_version 1.1;
        proxy_set_header Upgrade $http_upgrade;
        proxy_set_header Connection "upgrade";
        
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_set_header X-Forwarded-Proto $scheme;
        
        # (Optional) Disable proxy buffering for better streaming response from models
        proxy_buffering off;
    }
}
server {
     listen 80;
     server_name www.domain.com.tw;
     return 301 https://$host$request_uri; 
}

docker run -itd --name nginx \
  -p 80:80 -p 443:443 \
  --add-host=host.docker.internal:host-gateway \
  -v /mnt/Data/ollama/nginx/conf.d/nginx.conf:/etc/nginx/conf.d/nginx.conf \
  -v /mnt/Data/ollama/nginx/conf:/etc/nginx/conf \
  -m 100m library/nginx:latest

https://www.domain.com.tw

2025年2月4日 星期二

ASR 語音辨識

參考 https://speaches-ai.github.io/speaches/
參考 https://github.com/speaches-ai/speaches/tree/master

curl --silent --remote-name https://raw.githubusercontent.com/speaches-ai/speaches/master/compose.yaml
curl --silent --remote-name https://raw.githubusercontent.com/speaches-ai/speaches/master/compose.cuda.yaml
curl --silent --remote-name https://raw.githubusercontent.com/speaches-ai/speaches/master/compose.cuda-cdi.yaml
export COMPOSE_FILE=compose.cuda-cdi.yaml

安裝使用 CUDA with CDI(Container Device Interface) feature enabled
sudo nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml

修改 compose.cuda-cdi.yaml, 加入 command, 並修改 devices
services:
  speaches:
    command: ["uvicorn", "--factory", "speaches.main:create_app", "--ws-ping-interval", "1000", "--ws-ping-timeout", "1200"]
          # WARN: requires Docker Compose 2.24.2
          # https://docs.docker.com/reference/compose-file/merge/#replace-value
          devices:
            - driver: nvidia
              device_ids: ['0']
              capabilities:
                - gpu

伺服器端 log 出現下列錯誤
websockets.exceptions.ConnectionClosedError: sent 1011 (internal error) keepalive ping timeout; no close frame received
compose.cuda-cdi.yaml 的 command 加入 ws-ping-interval ws-ping-timeout

$ docker compose up --detach
$ docker compose stop
$ docker compose rm
$ docker compose logs
$ docker inspect speaches
$ docker cp speaches:/home/ubuntu/speaches/speaches/config.py .

$ docker compose exec speaches sh
$ docker compose run -d speaches uvicorn --factory speaches.main:create_app --ws-ping-interval=10 --ws-ping-timeout=12

伺服器端 log 出現下列錯誤
INFO:speaches.routers.stt:audio_receiver:262:Not enough speech in the last 30.0 seconds.
$ vi speaches/src/speaches/config.py
inactivity_window_seconds: float = 1000.0

說明文件
http://localhost:8000/docs
http://localhost:8000/redoc

$ curl -X POST -F "file=@/mnt/Data/Whisper/examples/《大隋说书人 》 01.mp3" -F "prompt=歡迎收聽第一集處女觀大隨雍洲且墨城深秋夜" -F "language=zh" http://localhost:8000/v1/audio/transcriptions

ubuntu Settings/Sound:Input 選擇正確輸入源,螢幕上的音量可以顯示輸入音量
列出可用音源輸入
$ arecord -l
**** List of CAPTURE Hardware Devices ****
card 0: PCH [HDA Intel PCH], device 0: ALCS1200A Analog [ALCS1200A Analog]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 0: PCH [HDA Intel PCH], device 2: ALCS1200A Alt Analog [ALCS1200A Alt Analog]
  Subdevices: 1/1
  Subdevice #0: subdevice #0

使用 card 0
$ ffmpeg -f alsa -i hw:0 -acodec libmp3lame -b:a 128k -abr 1 aaa.mp3
按q, 停止

因為使用 -i hw:0, 無法錄到聲音, 改用 -i default
$ arecord -L
default
    Playback/recording through the PulseAudio sound server

使用預設音源輸入
$ ffmpeg -f alsa -i default -acodec libmp3lame -b:a 128k -abr 1 aaa.mp3
按q, 停止
$ ffmpeg -loglevel quiet -f alsa -i default -ac 1 -ar 16000 -f s16le aaa.wav
按q, 停止
去除 mp3 的 metadata
$ ffmpeg -hide_banner -i '/mnt/Data/Whisper/examples/《大隋说书人 》 01.mp3' -c:v copy -c:a copy -map_metadata -1 test.mp3
轉 mp3 到 pcm
$ ffmpeg -i test.mp3 -f s16le -ar 16000 -ac 1 test.pcm

$ cat test.pcm | pv -qL 32000 | websocat --no-close --binary 'ws://localhost:8000/v1/audio/transcriptions?language=zh'

客戶端出現下列錯誤
Closing WebSocket connection due to ping timeout
命令中加入 --ping-timeout 和 --ping-interval

$ cat test.pcm | pv -qL 32000 | websocat --no-close --binary --ping-timeout 12000 --ping-interval 10000 'ws://localhost:8000/v1/audio/transcriptions?language=zh'

由麥克風輸入,產生 pcm 檔
$ ffmpeg -f alsa -ar 16000 -i default -ac 1 -f s16le aaa.pcm
轉成 mp3
$ ffmpeg -f s16le -ar 16000 -ac 1 -i aaa.pcm -codec:a libmp3lame aaa.mp3
$ cat aaa.pcm | pv -aL 32000 | websocat --no-close --binary --ping-timeout 12000 --ping-interval 10000 'ws://localhost:8000/v1/audio/transcriptions?language=zh'

測試 CLI
export OPENAI_BASE_URL=http://localhost:8000/v1/
export OPENAI_API_KEY="cant-be-empty"
openai api audio.transcriptions.create -m Systran/faster-whisper-large-v3 -f '/mnt/Data/Whisper/examples/《大隋说书人 》 01.mp3' --response-format text


申請 OPENAI_API_KEY, 並測試 
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

curl https://api.openai.com/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer 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" \
  -d '{
    "model": "gpt-4o-mini",
    "store": true,
    "messages": [
      {"role": "user", "content": "write a haiku about ai"}
    ]
  }'

2025年1月17日 星期五

websocat 測試

參考 https://github.com/vi/websocat
安裝檔案選擇
https://github.com/vi/websocat/releases
我的 ubuntu 選擇 websocat.x86_64-unknown-linux-musl

$ wget https://github.com/vi/websocat/releases/download/v1.14.0/websocat.x86_64-unknown-linux-musl -O websocat
$ chmod +x websocat
$ sudo mv websocat /usr/local/bin/

測試是否能執行,查詢版本
$ websocat --version

連線到公用的 echo 伺服器
$ websocat ws://ws.vi-server.org/mirror
123
123
ABC
ABC

使用 docker 連線到公用的 echo 伺服器
$ docker run --rm -ti ghcr.io/vi/websocat:nightly wss://ws.vi-server.org/mirror
123
123
ABC
ABC

開啟接收伺服器
A$ websocat -s 1234
Listening on ws://127.0.0.1:1234/
ABC
123

連線伺服器,傳送資料
B$ websocat ws://127.0.0.1:1234/
ABC
123

安裝 chrome
$ sudo snap install chromium

啟動 chrome, 有遠端除錯模式
$ chromium --remote-debugging-port=9222&

用另一終端執行命令,在 chrome 中開啟分頁
$ curl -X PUT http://127.0.0.1:9222/json/new | grep webSocketDebuggerUrl | cut -d'"' -f4 | head -1
ws://127.0.0.1:9222/devtools/page/DC8E8EF5B872E141E8F60FDB4764F648

注意上個命令返回的網址,修改並執行下列命令
$ echo 'Page.navigate {"url":"https://example.com"}' | websocat -n1 --jsonrpc --jsonrpc-omit-jsonrpc ws://127.0.0.1:9222/devtools/page/DC8E8EF5B872E141E8F60FDB4764F648

在 chrome 的分頁網址上連到 https://example.com/

將 WebSocket 連線轉成 TCP
$ websocat --oneshot -b tcp-l:127.0.0.1:1234 ws://ws.vi-server.org/mirror&
$ nc 127.0.0.1 1234

使用 TCP 和 WebSocket 轉換,測試 ssh
$ websocat --oneshot -b ws-l:127.0.0.1:1234 tcp:127.0.0.1:22&
$ websocat --oneshot -b tcp-l:127.0.0.1:1236 ws://127.0.0.1:1234/&
$ nc 127.0.0.1 1236
SSH-2.0-OpenSSH_8.2p1 Ubuntu-4ubuntu0.9
aaaaasdf
Invalid SSH identification string.

2024年10月16日 星期三

Jetson Container 使用紀錄,二

因為這次更新到 Jetpack 6.0, 所以測試得很順利

參考 https://jetsonhacks.com/2023/08/07/speech-ai-on-nvidia-jetson-tutorial/
註冊 NGC
生成 API 密鑰
$ ngc config set
$ ngc registry resource download-version nvidia/riva/riva_quickstart_arm64:2.17.0
$ cd riva_quickstart
$ vi config.sh
service_enabled_nlp=false
service_enabled_nmt=false
asr_language_code=("en-US")
#asr_language_code=("zh-CN")
tts_language_code=("en-US")
#tts_language_code=("zh-CN")
$ sudo bash riva_init.sh
$ sudo bash riva_start.sh
安裝 https://github.com/nvidia-riva/python-clients.git

### 文字介面
$ jetson-containers run --env HUGGINGFACE_TOKEN=hf_abc123def \
  $(./autotag nano_llm) \
  python3 -m nano_llm.chat --api=mlc \
    --model meta-llama/Llama-2-7b-chat-hf \
    --quantization q4f16_ft

### llamaspeak
$ jetson-containers run --env HUGGINGFACE_TOKEN=hf_xyz123abc456 \
  $(autotag nano_llm) \
  python3 -m nano_llm.agents.web_chat --api=mlc \
    --model meta-llama/Meta-Llama-3-8B-Instruct \
    --asr=riva --language-code=en-US --tts=piper \
    --voice=en_US-libritts-high --web-port 8050

$ jetson-containers run --env HUGGINGFACE_TOKEN=hf_xyz123abc456 \
  $(autotag nano_llm) \
  python3 -m nano_llm.agents.web_chat --api=mlc \
    --model meta-llama/Meta-Llama-3-8B-Instruct \
    --asr=riva --language-code=zh-CN --tts=piper \
    --voice=zh_CN-huayan-x_low --web-port 8050

參考 https://ithelp.ithome.com.tw/articles/10347557
輸入的中文識別:修改/opt/NanoLLM/nano_llm/plugins/speech/riva_asr.py,將裡面的language_code=從en-US改成zh-CN
輸出的中文語音:修改/opt/NanoLLM/nano_llm/plugins/speech/piper_tts.py,將裡面的en_US-libritts-high模型(有兩處)改成zh_CN-huayan-medium模型。這裡可以選擇的中文模型,可以在/data/models/piper/voices.json裡找到,請用關鍵字zh-CN搜索,會找到zh_CN-huayan-medium與zh_CN-huayan-x_low兩組可用的中文語言

還須設定 ws-port(49000) 的 nat port 轉換
can you describe the image?

##Multimodality
$ jetson-containers run $(autotag nano_llm) \
  python3 -m nano_llm.agents.web_chat --api=mlc \
    --model Efficient-Large-Model/VILA-7b \
    --asr=riva --tts=piper

### Agent Studio
# python3 -m nano_llm.studio
https://IP_ADDRESS:8050

### text-generation-webui
$ jetson-containers run $(autotag text-generation-webui)
http://<IP_ADDRESS>:7860

中文模型
ckip-joint_bloom-3b-zh
參考  https://www.atyun.com/models/info/ckip-joint/bloom-3b-zh.html
taide_Llama3-TAIDE-LX-8B-Chat-Alpha1-4bit
參考  https://taide.tw/index
yentinglin_Llama-3-Taiwan-8B-Instruct
參考  https://medium.com/@simon3458/project-tame-llama-3-taiwan-1b249b88ab67

### ollama (Open WebUI)
$ jetson-containers run --name ollama $(autotag ollama)
# /bin/ollama run llama3
$ docker run -it --rm --network=host --add-host=host.docker.internal:host-gateway ghcr.io/open-webui/open-webui:main
http://JETSON_IP:8080

### Stable Diffusion
$ jetson-containers run $(autotag stable-diffusion-webui)
http://<IP_ADDRESS>:7860
txt2img: a person sitting at an office desk working
img2img: 先放一張圖
1. 右上 Generate 下方有 Interrogate CLIP 和 Interrogate DeepBooru 兩按鈕,可讀取圖片資訊
2. 可修改讀取出的資訊,按 Generate, 重新產生圖
3. 選 Resize and fill, 並配合不同的 Denising strength, 按 Generate, 重新產生圖
4. 選 Just resize, 並配合不同的 Denising strength, 按 Generate, 重新產生圖
5. Inpaint: 在 prompt 上填入 sunglasses, 將圖片上的眼睛位置塗黑, 按 Generate, 重新產生圖

### Stable Diffusion XL
$ CONTAINERS_DIR=`pwd`
$ MODEL_DIR=$CONTAINERS_DIR/data/models/stable-diffusion/models/Stable-diffusion/
$ sudo chown -R $USER $MODEL_DIR
$ wget -P $MODEL_DIR https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors
$ wget -P $MODEL_DIR https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0.safetensors
左上角 Stable Diffusion checkpoint 選擇 sd_xl_base_1.0.safetensors
Generation tab 點選 Refiner 選擇 sd_xl_refiner_1.0.safetensors
改 width/height 到 1024
txt2img: photograph of a friendly robot alongside a person climbing a mountain 

### Jetson Copilot
git clone https://github.com/NVIDIA-AI-IOT/jetson-copilot/
cd jetson-copilot
./setup_environment.sh
./launch_jetson_copilot.sh
http://JETSON_IP:8501


$ virtualenv --system-site-packages tensorrt

$ docker ps -a
$ docker kill wqerqwer

2024年9月26日 星期四

模型優化之指派問題(linear sum assignment problem)

參考 匈牙利算法
python 使用函數
scipy.optimize.linear_sum_assignment
lap.lapjv


MMTracking 學習紀錄

參考 https://mmtracking.readthedocs.io/en/latest/index.html
參考 https://github.com/open-mmlab/mmtracking

$ git clone https://github.com/open-mmlab/mmtracking.git

$ docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:21.05-py3
$ docker run --gpus all -it --name MMTracking nvcr.io/nvidia/pytorch:21.05-py3
$ docker start MMTracking
$ docker attach MMTracking
# <ctrl+p><ctrl+q>
$ docker attach MMTracking
$ docker stop MMTracking
$ docker rm MMTracking

$ echo $DISPLAY
$ export DISPLAY=:0
$ xhost +
$ docker run --gpus all -it --name MMTracking --shm-size=8G \
  --net=host -e DISPLAY=$DISPLAY -e XAUTHORITY=/tmp/xauth \
  -e QT_X11_NO_MITSHM=1 \
  -v /tmp/.X11-unix/:/tmp/.X11-unix \
  -v ~/.Xauthority:/tmp/xauth \
  -v /etc/localtime:/etc/localtime \
  -v /mnt/Data/MMTracking/mmtracking:/workspace/mmtracking \
  nvcr.io/nvidia/pytorch:21.05-py3

# pip install git+https://github.com/votchallenge/toolkit.git
# nvidia-smi
CUDA Version: 12.2
# pip list
opencv-python                    4.10.0.84
torch                            1.9.0a0+2ecb2c7

# pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu122/torch1.9.0/index.html
#### 出現下列錯誤
####    cv.gapi.wip.GStreamerPipeline = cv.gapi_wip_gst_GStreamerPipeline
####AttributeError: partially initialized module 'cv2' has no attribute 'gapi_wip_gst_GStreamerPipeline' (most likely due to a circular import)
#### 解決
# pip install opencv-python==4.5.1.48

# pip install mmdet==2.28.2
# pip install mmengine==0.10.4
# pip list
mmcv-full                        1.7.2
mmdet                            2.28.2
mmengine                         0.10.4
pillow                           10.4.0
# cd /workspace/mmtracking/
# pip install -r requirements/build.txt
# pip install -v -e .
# pip install git+https://github.com/JonathonLuiten/TrackEval.git
# pip install git+https://github.com/lvis-dataset/lvis-api.git
# pip install git+https://github.com/TAO-Dataset/tao.git

# python demo/demo_mot_vis.py configs/mot/deepsort/deepsort_faster-rcnn_fpn_4e_mot17-private-half.py \
  --input demo/demo.mp4 --output mot.mp4 --show
#### 出現下列錯誤
####    from .cv2 import *
####ImportError: libGL.so.1: cannot open shared object file: No such file or directory
#### 解決
# apt-get update
# apt-get install libgl1
#### 出現下列錯誤
####    NumpyArray = npt.NDArray[Any]
####AttributeError: module 'numpy.typing' has no attribute 'NDArray'
#### 解決
# pip install Pillow==9.5.0
#### 出現下列錯誤
#### Could not load the Qt platform plugin "xcb" in "/opt/conda/lib/python3.8/site-packages/cv2/qt/plugins" even though it was found.
####This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.
#### 查詢錯誤所在
# export QT_DEBUG_PLUGINS=1
####Cannot load library /opt/conda/lib/python3.8/site-packages/cv2/qt/plugins/platforms/libqxcb.so: (libSM.so.6: cannot open shared object file: No such file or directory)
#### 解決
# apt-get install -y libsm6 libxext6 libxrender-dev
# pip install opencv-contrib-python==4.5.1.48

# wget https://download.openmmlab.com/mmtracking/mot/ocsort/mot_dataset/ocsort_yolox_x_crowdhuman_mot17-private-half_20220813_101618-fe150582.pth
# python demo/demo_mot_vis.py configs/mot/ocsort/ocsort_yolox_x_crowdhuman_mot17-private-half.py \
  --checkpoint ocsort_yolox_x_crowdhuman_mot17-private-half_20220813_101618-fe150582.pth \
  --input demo/demo.mp4 --output mot.mp4 --show

# wget https://download.openmmlab.com/mmtracking/vid/selsa/selsa_faster_rcnn_r101_dc5_1x_imagenetvid/selsa_faster_rcnn_r101_dc5_1x_imagenetvid_20201218_172724-aa961bcc.pth
# python demo/demo_vid.py configs/vid/selsa/selsa_faster_rcnn_r101_dc5_1x_imagenetvid.py \
  --checkpoint selsa_faster_rcnn_r101_dc5_1x_imagenetvid_20201218_172724-aa961bcc.pth \
  --input demo/demo.mp4 --show

# python demo/demo_sot.py configs/sot/siamese_rpn/siamese_rpn_r50_20e_lasot.py \
  --input demo/demo.mp4 --output sot.mp4 --show
#### 用滑鼠框出要追蹤的物件,按空白鍵